A Note on Some Quadrature Formulas for the Interval $(-\infty, \infty)$

By Seymour Haber

In a paper in this journal [1], W. M. Harper proposed a family of "Gaussian" quadrature formulas for $\int_{-\infty}^{\infty}\left(1+x^{2}\right)^{-k-1} f(x) d x$. It is the purpose of this note to re-derive some of his formulas from a different point of view, which suggests a different manner of using them and leads to a convergence theorem

For the approximate evaluation of the integral over $(-\infty, \infty)$ of a rational or algebraic integrand-or any integrand which goes to zero as a negative power of $|x|$ as x goes to infinity-it seems reasonable to want a formula based on a weight function with similar behavior, rather than on $e^{-x^{2}}$ as in the Hermite-Gauss quadrature. If the integrand f goes to zero as $|x|^{-p}$, a natural choice of weight function is $w_{\alpha}(x)=\left(1+x^{2}\right)^{-\alpha}, \alpha=p / 2$. Setting $f(x)=w_{\alpha}(x) g(x)$, we are led to consider formulas of the form:

$$
\begin{equation*}
\int_{-\infty}^{\infty} w_{\alpha}(x) g(x) d x \sim \sum_{i=1}^{n} A_{i}{ }^{(\alpha)} g\left(x_{i}{ }^{(\alpha)}\right) ; \quad \quad \alpha>\frac{1}{2} \tag{1}
\end{equation*}
$$

where g is a bounded function.
Since g is bounded on the whole line, we cannot base the formulas on consideration of polynomial approximation to g; one choice that suggests itself is to consider approximation to g by functions of the form

$$
a_{0}+\frac{a_{1}+b_{1} x}{1+x^{2}}+\frac{a_{2}+b_{2} x}{\left(1+x^{2}\right)^{2}}+\cdots+\frac{a_{m}+b_{m} x}{\left(1+x^{2}\right)^{m}}
$$

We thus look to determine the abscissas and coefficients of the quadrature formula so as to make it exact for all functions of this form for m as high as possible.

Since $w_{\alpha}(x)$ is even, requiring that the formula be symmetric about zero, i.e. of the form

$$
2 B_{0}{ }^{(\alpha)} g(0)+\sum_{i=1}^{N} B_{i}{ }^{(\alpha)}\left[g\left(x_{i}{ }^{(\alpha)}\right)+g\left(-x_{i}{ }^{(\alpha)}\right)\right]
$$

insures its exactness for all term $b_{r} x\left(1+x^{2}\right)^{-r}$, and only the terms $a_{0}, a_{1}\left(1+x^{2}\right)^{-1}$, $a_{2}\left(1+x^{2}\right)^{-2}, \cdots$ need further consideration. These are all even, and so it amounts to the same thing to consider the quadrature formula

$$
\begin{equation*}
\int_{0}^{\infty} w_{\alpha}(x) g(x) d x \sim B_{0}^{(\alpha)} g(0)+\sum_{i=1}^{N} B_{i}^{(\alpha)} g\left(x_{i}^{(\alpha)}\right) \tag{2}
\end{equation*}
$$

The $B_{i}{ }^{(\alpha)}$ and $x_{i}{ }^{(\alpha)}$ are to be determined so as to maximize the highest integer M such that (2) is exact whenever $g=P\left(\left(1+x^{2}\right)^{-1}\right)$ with P a polynomial of degree M or lower.

For such g, setting $y=\left(1+x^{2}\right)^{-1}$ transforms the integral in (2) into $\frac{1}{2} \int_{0}^{1} y^{\alpha-3 / 2}(1-y)^{-1 / 2} P(y) d y$; and the Jacobi-Gauss quadrature formula (see [2]

[^0][3]) for the exponents $\alpha-\frac{3}{2}$ and $-\frac{1}{2}$ and for N abscissas evaluates this last integral exactly whenever the degree of P is $\leqq 2 N-1$, and that is the best that can be done. Thus our abscissas and coefficients are given by (since all the $y_{i}{ }^{(\alpha)}$ are less than 1):
\[

$$
\begin{equation*}
B_{0}{ }^{(\alpha)}=0 ; \quad B_{i}{ }^{(\alpha)}=\frac{1}{2} C_{i}{ }^{(\alpha)}, \quad x_{i}{ }^{(\alpha)}=\left(1-y_{i}{ }^{(\alpha)}\right)^{1 / 2}\left(y_{i}{ }^{(\alpha)}\right)^{-1 / 2}, \quad i \geqq 1 \tag{3}
\end{equation*}
$$

\]

where the $C_{i}{ }^{(\alpha)}$ and $y_{i}{ }^{(\alpha)}$ are the coefficients and abscissas of the Jacobi-Gauss formula.
Since the set of all functions of the form

$$
\left(1+x^{2}\right)^{-\alpha}\left[a_{0}+\frac{a_{1}+b_{1} x}{\left(1+x^{2}\right)}+\cdots+\frac{a_{2 N-1}+b_{2 N-1} x}{\left(1+x^{2}\right)^{2 N-1}}\right]
$$

is also that of all functions of the form $\left(1+x^{2}\right)^{-2 N-\alpha+1} Q(x)$ where Q is a polynomial of degree $4 N-2$ or lower, the conditions determining the above formula for any α and N are the same as those determining Harper's formula for (using " k " and " n " in the meaning given them in [1]) $k=\alpha+2 N-2, n=2 N$. Thus we have just re-derived Harper's formulas for even n.

It follows from known properties of Jacobi-Gauss quadrature that the coefficients are non-negative; and if f is continuous and α is chosen large enough to make g bounded, it follows that the approximation obtained converges to the integral as N increases.

National Bureau of Standards
Washington, D. C.

1. W. M. Harper, "Quadrature formulas for infinite integrals," Math. Comp., v. 16, 1962, p. 170-175.
2. V. 1. Krylov, Approximate Calculation of Integrals, Macmillan, New York, 1962, Chapter 7.
3. F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, New York, 1956, p. 331-334.

Generalized Trigonometric Functions

By F. D. Burgoyne

In an investigation into geometrical properties of the curves $x^{n} / a^{n}+y^{n} / b^{n}=1$, use was made of the functions $s_{n}(u)$ where

$$
u=\int_{0}^{s_{n}(u)}\left(1-t^{n}\right)^{1 / n-1} d t \quad\left(0 \leqq u \leqq P_{n}\right)
$$

and

$$
P_{n}=\int_{0}^{1}\left(1-t^{n}\right)^{1 / n-1} d t=2\left\{\left(\frac{1}{n}\right)!\right\}^{2} /\left(\frac{2}{n}\right)!
$$

These functions may be called generalized trigonometric functions in view of the fact that $s_{2}(u)=\sin u$. Further, $s_{3}(u)$ is the Dixon function $s m u$, considered by Dixon [1], Adams [2], and Laurent [3]. For $n=4$ and 6 the functions are related to the Jacobian elliptic functions $\operatorname{sn}(u)$ with moduli $2^{1 / 2} / 2$, $\left(2-3^{1 / 2}\right)^{1 / 2} / 2$

Received April 22, 1963, revised May 28, 1963.

[^0]: Received August 7, 1963.

